507 research outputs found

    Adaptive Neural Network Robust Control for Space Robot with Uncertainty

    Get PDF
    The trajectory tracking problems of a class of space robot manipulators with parameters and non-parameters uncertainty are considered. An adaptive robust control algorithm based on neural network is proposed by the paper. Neutral network is used to adaptive learn and compensate the unknown system for parameters uncertainties, the weight adaptive laws are designed by the paper, System stability base on Lyapunov theory is analysised to ensure the convergence of the algorithm. Non-parameters uncertainties are estimated and compensated by robust controller. It is proven that the designed controller can guarantee the asymptotic convergence of tracking error. The controller could guarantee good robust and the stability of closed-loop system. The simulation results show that the presented method is effective

    Adaptive Control of Space Robot Manipulators with Task Space Base on Neural Network

    Get PDF
    As are considered, the body posture is controlled and position cannot control, space manipulator system model is difficult to be set up because of disturbance and model uncertainty. An adaptive control strategy based on neural network is put forward. Neural network on-line modeling technology is used to approximate the system uncertain model, and the strategy avoids solving the inverse Jacobi matrix, neural network approximation error and external bounded disturbance are eliminated by variable structure control controller. Inverse dynamic model of the control strategy does not need to be estimated, also do not need to take the training process, globally asymptotically stable of the closed-loop system is proved based on the lyapunov theory. The simulation results show that the designed controller can achieve high control precision has the important value of engineering application

    Weak Signal Detection Based on Adaptive Cascaded Bistable Stochastic Resonance System

    Get PDF
    AbstractStochastic resonance system is an effective method to extract weak signal, however, system output is directly influenced by system parameters. Aiming to this, a method about weak periodic signal extraction was developed based on adaptive stochastic resonance. Firstly cascaded stochastic resonance system was established in order to achieve better low-pass filtering effect. And then, variance of zero point distance was chosen as measurement index of cascade system. It's able to overcome the shortage that traditional adaptive stochastic resonance system needs to know the signal frequency beforehand. Also, it could obtain optimum system parameters adaptively. Basing on these parameters, input signal will be handled, and optimum output could be obtained. Furthermore, different periodic signal have been recognized, and finally the validity of the method is verified through simulation experiments

    Fractal Behavior in the Clarification Process of Cane Sugar Production

    Get PDF
    Cane sugar production is an important industrial process. One of the most important steps in cane sugar production is the clarification process, which provides high-quality, concentrated sugar syrup crystal for further processing. To gain fundamental understanding of the physical and chemical processes associated with the clarification process and help design better approaches to improve the clarification of the mixed juice, we explore the fractal behavior of the variables pertinent to the clarification process. We show that the major variables in this key process all show persistent long-range correlations, for time scales up to at least a few days. Persistent long-range correlations amount to unilateral deviations from a preset target. This means that when the process is in a desired mode such that the target variables, color of the produced sugar and its clarity degree, both satisfy preset conditions, they will remain so for a long period of time. However, adversity could happen, in the sense that when they do not satisfy the requirements, the adverse situation may last quite long. These findings have to be explicitly accounted for when designing active controlling strategies to improve the quality of the produced sugar

    Phytoplankton abundance and size-fractionated structure in three contrasting periods in the Pear River Estuary

    Get PDF
    Phytoplankton abundance, composition and size-fractionated chlorophyll a (micro-, nano- and pico-chl. a) in the Pearl River Estuary (PRE), South China were assessed in three surveys (Aug. 2010, Jan. 2011 and Aug. 2011) to identify key environmental indicators that shape their distribution patterns. Non-metric multidimensional scaling (MDS) showed that the PRE formed three regional clusters that were characterized by a transition from dominant freshwater species to estuarine diatoms in normal summer flow conditions (Aug. 2010). With a reduced river flow in winter (Jan. 2011), the inner estuary was categorized as one group marked by the predominance of the nanoflagellate, Plagioselmis prolonga. This small-sized cryptophyte was first recorded in the PRE and was likely to outcompete other phytoplankton species in turbid or well-mixed waters. During the extreme drought of summer of 2011 (Aug. 2011), the estuarine plume was limited and regional division by MDS was similar to winter patterns, as some marine species were observed in the upper estuary. We considered that the higher phytoplankton density in the summer of 2011 was presumably a combined effect of longer residence time and higher phosphate concentration. With respect to the size-fractionated phytoplankton composition, our results showed that almost half of the chl. a in the estuary was contained in microplankton particles, while the proportion of pico-chl. a increased from the upstream of the PRE towards the estuary boundary (Wanshan Islands). Furthermore, phytoplankton abundance, three size classes of chl. a and environmental factors were explored by principal component regression (PCR) analysis. In three surveys, pico-chl. a was negatively correlated with the first principal component (PCL, positively loaded with salinity and inversely with inorganic nutrients), which indicated a negative influence of the riverine and coastal waters on picophytoplankton and the specific oligotrophic niche of picophytoplankton. Similarly, PC1 was also considered as the key environmental variable basis controlling micro-chl. a in summer of 2010, while in the summer of 2011, zooplankton and copepods were positively associated with phytoplankton abundance, suggesting a resource effect of phytoplankton on zooplankton development

    Structure symmetry determination and magnetic evolution in Sr2Ir1−xRhxO4\rm Sr_2Ir_{1-x}Rh_{x}O_4

    Get PDF
    We use single-crystal neutron diffraction to determine the crystal structure symmetry and the magnetic evolution in the rhodium doped iridates Sr2Ir1−xRhxO4\rm Sr_2Ir_{1-x}Rh_{x}O_4 (0≤x≤0.160\leq x \leq 0.16). Throughout this doping range, the crystal structure retains a tetragonal symmetry (space group I41/aI4_1/a) with two distinct magnetic Ir sites in the unit cell forming staggered IrO6\rm IrO_6 rotation. Upon Rh doping, the magnetic order is suppressed and the magnetic moment of Ir4+^{4+} is reduced from 0.21 μB\rm \mu_B/Ir for x=0x=0 to 0.18 μB\rm \mu_B/Ir for x=0.12x=0.12. The magnetic structure at x=0.12x=0.12 is different from that of the parent compound while the moments remain in the basal plane.Comment: Accepted for publication in Phys. Rev.

    Simultaneous Metal-Insulator and Antiferromagnetic Transitions in Orthorhombic Perovskite Iridate Sr0.94Ir0.78O2.68 Single Crystals

    Get PDF
    The orthorhombic perovskite SrIrO3 is a semimetal, an intriguing exception in iridates where the strong spin-orbit interaction coupled with electron correlations tends to impose a novel insulating state. We report results of our investigation of bulk single-crystal Sr0.94Ir0.78O2.68 or Ir-deficient, orthorhombic perovskite SrIrO3. It retains the same crystal structure as stoichiometric SrIrO3 but exhibits a sharp, simultaneous antiferromagnetic (AFM) and metal-insulator (MI) transition at 185 K. Above it, the basal-plane resistivity features an extended regime of almost linear-temperature dependence up to 800 K but the strong electronic anisotropy renders an insulating behavior in the out-of-plane resistivity. The Hall resistivity undergoes an abrupt sign change and grows below 40 K, which along with the Sommerfeld constant of 20 mJ/mole K2 suggests a multiband effect. All results including our first-principles calculations underscore a delicacy of the metallic state in SrIrO3 that is in close proximity to an AFM insulating state. The contrasting ground states in isostructural Sr0.94Ir0.78O2.68 and SrIrO3 illustrate a critical role of even slight lattice distortions in rebalancing the ground state in the iridates. Finally, the observed simultaneous AFM and MI transitions reveal a direct correlation between the magnetic transition and formation of a charge gap in the iridate, which is conspicuously absent in Sr2IrO4.Comment: 5 figure
    • …
    corecore